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Abstract This paper is concerned with the continuous-time quantum walk on Z, Z“, and
infinite homogeneous trees. By using the generating function method, we compute the limit
of the average probability distribution for the general isotropic walk on Z, and for nearest-
neighbor walks on Z¢ and infinite homogeneous trees. In addition, we compute the asymp-
totic approximation for the probability of the return to zero at time ¢ in all these cases.
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1 Introduction

The concept of quantum walk has its origin in the field of quantum computation where the
notion of classical random walk has been adapted to the quantum-mechanical setting in an
attempt to improve the performance of random walk algorithms. Since its origination in the
middle of 90s, this new concept has drawn a lot of attention in physical and mathematical
literature.

The early papers that formulated the main ideas of quantum walk are [3] and [14]. From
the numerous later papers, we would like to mention [6] where the continuous-time quantum
walk was defined and [2] which defined and studied the discrete-time quantum walk on
finite graphs. An introductory review of quantum walks can be found in [9]. For recent
developments the reader can also consult [12].

In general, a quantum walk is described by a triple (G, ¥, U;), where G is a graph, ¥ is
a unit-length complex vector function on this graph, i.e., v € H = L*(G) @ CV, ||y | =1,
and U, is a family of unitary operators on .

The interpretation is that the state of a particle at time ¢ is completely described by
function U,y. Upon measurement at time ¢, the particle is found at vertex v in state
s €{1,2,..., N} with probability p(v,s,t) = |(U;¥)(v, s)|*. (By probability we mean a
collection of non-negative numbers p(v, s, r) thatsumto 1, )" ., Z;\;] p(v,s, t)=1.)
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There are two types of quantum walk on graph G. The first type is the discrete-time walk.
Time is discrete, t € Z, and a step of the quantum walk is given by a unitary transforma-
tion U, so that ¥, = Uv,. This one-step transformation U has some special properties,
one of which is locality: U, j, = 0 if the graph-theoretical distance between vertices v and
u is sufficiently large. The discrete-time quantum walks on Z and Z¢ have been studied
in [10] and [8] who found that their asymptotic behavior is significantly different from the
behavior of classical random walks.

In this paper we are going to investigate continuous-time quantum walks [6] on infinite
graphs. We assume that function v depends only on the position of the particle and time
(hence N = 1), that r € R, and that the evolution operators U, are given by the following
expression:

U, =exp(—iXt),

where X is a self-adjoint operator (“Hamiltonian™) on L?(G) that respects the structure of
the graph. One example of such an operator is the discrete Laplacian of the graph. We also
assume that the initial function i is concentrated on one of the vertices, the origin of the
walk. As usual, the probability to find a particle at vertex v if the system is measured at
time ¢ is given by |/ (v, 1) |%.

The continuous-time walk is not local and the relation between continuous-time and
discrete-time walks is not yet clear [4]. However, the continuous-time has an advantage over
the discrete-time model in being more tractable analytically.

For our study, we choose the simplest infinite graphs: the integer lattices Z and Z¢, and
the homogeneous infinite tree T,,, in which every vertex has valency m. The continuous-
time walk on Z has been previously investigated by several researchers. In particular, by
using the Fourier inversion method, Gottlieb in [7] derived a formula for the limit probability
distribution for a very general class of quantum walks on Z. In our paper, an equivalent
formula for the limit is obtained by using the generating series method instead of the Fourier
inversion. The advantage of this method is that it is easier to generalize it to the case of
homogeneous trees which is not considered in [7]. In addition, this method allows us to
show that the probability distribution converges to zero faster than any polynomial in time
in the regions sufficiently far away from the origin. This provides a simple large deviation
estimate for quantum walks on Z.

Let us start with graph G = Z, let the initial function ¥, (0) = §y, where § is the delta-
function concentrated on 0, and let U, = exp(i X¢), where X is an Hermitian operator on
L?(Z) We are interested in computing

Vi (1) = (8U;80).

We say that the quantum walk has finite support if there exists a constant L, such that
X;j =0if |i — j| > L. We call the walk isotropic if X;; =a;_; and a_; = a;, where a; are
certain constants. If X;; = §;;_;—1, we say that the quantum walk is nearest-neighbor.

For a general isotropic quantum walk on Z, define the generating function of the walk
by the formula P(9) = Y_© L ae’". For example, for the nearest-neighbor random walk,
P(0) =2cos6.

Theorem 1.1 Let P(0) be the generating function of an isotropic quantum walk with finite
support on 7. Assume that y;(0) = 8y. Let « =1/t and suppose that equation P'(0) = —«
has K > 0 real solutions 6 () in the interval [0, 21). Then, the transition amplitude from 0
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to | is given by the formula

K 1

1
N === ma

Q1 POOFat)ETI /4 4 0(%) 1

where the sign before i /4 equals the sign of P"(6). If equation P’ (0) = —« has no real
solutions, then

Vi) < cut™

for all n and appropriately chosen c,,.

We will prove this theorem in Sect. 2.
Next, define the rescaled probability distribution as p(«, 1) = t|Ya(f) |2, and define the
average rescaled probability as

1 T+VT
pla,T)= ﬁ/ pla, t)dr. @)
T

Corollary 1.2 Suppose that equation P'(6) = —a has K > 0 real solutions 6 («) in the
interval [0, 2), and that numbers

Wi = P(@k) + O[Qk

are all different. Then

K
1 1
lim p(e, T) = — —_. 3
AP D=0 kz:; [P"(60)] ©
If equation P’'(0) = —a has no real solutions, then

lim p(e, T) =0.
T—o0

In the case, when some of w; coincide, (3) needs a small adjustment which takes into
account the positive interference of the exponents with the same frequency.

Proof of Corollary 1.2 From Theorem 1.1, it follows that

S
=
Pen =20 ipa)

" b ) explit (wx — @) + [sgn(P"(6k)) — sgn(P"(0)) i /4]
[P (B[ P"(0))]

After averaging over ¢, we get

K

P =5 Y s+ 0( =)
P am &praol T O\VT ) 0
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In particular, we obtain the following formula for the probability of return to zero.

Corollary 1.3 Let equation P'(0) =0 have K > 0 real solutions 6;, in the interval [0, 27r)
and assume that P(6)) are all different. Then the average probability of the return to zero is

K

_ 1 1 1
Do(t) = St Z 7|P//(9k)| + 0([27)

k=1

A somewhat different expression for the limit of the average rescaled probability distrib-
ution was obtained in [7]. Namely, by using the Fourier inversion methods Gottlieb obtained
the following formula for the limit:

1
py(X) = 2—/ [(F*y)(0)]%d6.
T Ji6:—P'(0)eX)}

Here, p,(X) denotes the limit of the probability to find the particle in the set {I;//t €}
at time ¢, provided that the initial wave function is . The function (F*v)(0) is defined
as Y ez Y,e® . In our case, the random walk is started from the origin and therefore
(F*¢)(0) = 1. Then, by using Gottlieb’s formula, it is easy to compute

li
do do

. pw([oz,ot—i-dot])_ 1 1
o - 2 @

{0:—P'(0)=a}

which is (3). We obtain (3) by the method of generating functions which we will also use
for quantum walks on trees.

For a particular example, consider the nearest-neighbor quantum walk on Z. That is,
assume that X;; = 8;;_;—;. Then, P'() = —2sin6€ and there are two solutions 6 («) for
a < 2:0; = arcsin(«/2) and 6, = & — 6,. Hence, we can compute | P”(0;)| = v/4 — o2, and
the average rescaled distribution has the following limit:

1 |
ple,T) Tjoo ;\/47—7 4)
In other words, the average rescaled distribution converges to the arcsine law. (This result is
the first limit theorem for continuous-time quantum walks, which was obtained in [11] by
using the asymptotics of Bessel functions.)

Consider another example with P(0) = ™% + 7" + ¢! + ¢'?. The limit probabil-
ity distribution can be computed numerically by using Theorem 1.1. It is shown in Fig. 1.
Note that the points where the probability distribution has singularities correspond to local
maxima of the function P’(8) = —2(2sin20 + sin).

Let us summarize the main features of quantum walks on the integer lattice. First of all,
the length of the interval where the distribution of quantum walk is essentially supported is
of order ¢ instead of /7 as in the classical case. Then, the probability of the return to the
origin at time ¢ is of order ¢~' instead of ~'/2. Finally, unlike the classical case, the limit
distribution is not Gaussian and its shape depends on the generator of the quantum walk.

What can be said about the continuous-time quantum walk on Z¢? We consider here only
the nearest-neighbor walk. It turns out that in this case the quantum walk on Z¢ factorizes
provided it was started from the origin. That is, every transition amplitude of the walk on Z¢
can be written as a product of transition amplitudes of the walk on Z.
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Fig. 1 The limit average 1.4
probability distribution for the
quantum walk on Z with 1.2¢ 1
P(€)=€7120+€710+€l9+8126 1
0.8} |
0.6} |
0.4] ]
0 \ \ s s \
-6 -4 -2 0 2 4 6

For simplicity of notation we consider only the case of Z?. The general case is similar. Let
Y, ) (t) be the transition amplitude of the transition from vertex (0, 0) to vertex (i, j). (That
is, ¥, j (1) = (8¢, j|Us8(0,0))» Where 8(0,0) and &, ) denote the delta-functions concentrated
on vertices (0, 0) and (i, j), respectively.)

Theorem 1.4 Let the nearest-neighbor quantum walk on 7?2 be started from the origin, i.e.,
\/f(O) = 8(010). Then,

Y, (@) =i (DY, (@),

where ; (1) is the transition amplitude for the nearest-neighbor quantum walk on 7. started
from the origin.

We prove this result in Sect. 2. Previously, this fact was observed without proof in Ap-
pendix of [1].

Let us now turn to continuous-time quantum walks on homogeneous trees. (The previous
studies of this topic include [6] and [15].) We restrict our investigations to the case of the
nearest-neighbor walk.

Let G = T,,, the m-valent infinite tree with m > 3, the initial ¥ be §., where e is the
root of the tree, and let U, = exp(i X¢t), where X is the adjacency matrix of the tree. Let
r :=2+/m — 1. (This is the spectral radius of the operator X.) Finally, let us define the
following functions of parameter o:

o
a)l(o{) =aarctanﬁ + vV r2 —(Xz,
re—ao

() = amr — wy,

and

@) ; m o T
«) = —arctan —_— |-
@1 m_2 I

(@) =—7 —¢1.

Theorem 1.5 Consider the nearest-neighbor quantum walk on the regular infinite tree of
valency m. Assume ¥ (0) = 8., and let ¥ (t) be the amplitude of transition from the root to
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a vertex w which is located at distance | from the root. Let o =1/t. Then

. 1 1 m—1a? [ . .
eTlog(mfl)wl (1) = 5 N - R Zeztwk(a)+l(ﬂk(a)
V2rt (2 — o)A\ @ + (m = 2)* | —

1
+O<;>, f0<a<r.

In addition, there is a constant ¢ > 0, which depends only on m, such that

at C
e 2 oEm Dy (1)] < - ifa>r.

We will prove this theorem in Sect. 3.
Next, define

pla,t) =m(m — Dty (01, (&)

and

1 T+vT
pla,T)= ﬁ/ pla, t)dr. (©)
T

The factor m(m — 1)[*1=! in (5) equals the number of vertices in the tree at the distance
[at] > 1 from the root. Intuitively, p(«, T) is the average probability density of the event that
we find a particle at the distance approximately ¢ from the root if we measure its position
at time approximately equal to 7. Then, we have the following corollary of Theorem 1.5.

Corollary 1.6 Suppose that w(a) # wy(e). Then

lim 5. T) — 1 1 mao? 0
P D) = e i m . V0=e=n
=0, ifa>r

The proof of this corollary is similar to the proof of Corollary 1.2 and is omitted.

The limit distribution is similar to the arcsine distribution (4), except it has a weighting
factor, which is different for every m. A plot of the limit average distribution is shown in
Fig. 2 for m =4 and m = 20. For the purposes of comparison we have additionally rescaled
the support of the distribution so that supports are the same for both m. It can be seen that
the walk on the tree of higher valency has higher density next to the border of the support.

Note that the quantum walk on trees behaves (perhaps non-surprisingly) quite different
from the classical random walk on trees. In the latter case, it is possible to show that the
distribution of the particle distance from the root is asymptotically Gaussian with mean ct
and standard deviation o/ where ¢, o > 0 (see [16] and [13]). This result is very different
from what we find in the quantum case.

Consider now the amplitude of the return to zero at time ¢.

Theorem 1.7 Let vy(t) denote the transition amplitude of the return to the root at time t for
the nearest-neighbor quantum walk on the m-valent infinite tree started at the root. Suppose
that m > 3. Then, for large t the following asymptotic approximation is valid:

1 m@m—DYV*
STt (m —2)?

Yolt) = sin[(2v/m — 1) —7/4] + o(%)
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Fig. 2 The limit average
probability distribution for the
quantum walk on a homogeneous
tree with valency m. The solid
line is for m = 4, and the dashed
line is for m = 20. The support of L
the distribution is rescaled to

[0, 1] interval

N W s OO N > ©

Fig. 3 The transition amplitude
of the return to the root for the
nearest-neighbor quantum walk.
The solid line is for integer k
lattice Z; the dash-dotted line is
for 4-valent infinite tree Ty

0.5¢

10

The plot of ¥y(¢) for m = 4 is shown in Fig. 3 by dash-dotted line. We can see that
the frequency of oscillations in the return amplitude is higher than in the case m = 2. In
addition, the absolute values of maxima decline faster.

As a corollary of Theorem 1.7, we can see that the probability of the return to zero has
the following asymptotic approximation:

po(t) = v sin?[(2v/m — 1)t — /4] + 0(t777?).

If we compare these results with the case of the classical random walk, we find two
surprising facts. First, there is no exponential decay factor in the probability of return. The
decay is polynomial of order #=3. Second the exponent in this polynomial decay does not
depend on the valency of the tree although the frequency of oscillations and the overall
constant does depend on it.

The rest of the paper is organized as follows. Section 2 provides proofs for Theorems 1.1
and 1.4 concerning quantum walks on Z and Z“. And Sect. 3 gives proofs for Theorems 1.5
and 1.7 concerning the nearest-neighbour quantum walk on homogeneous trees.
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2 Quantum Walk on Integer Lattices

Proof of Theorem 1.1 1t is convenient to introduce additional notation. Let G be a graph
(V,E).For f,g € L?(V), we define

g =) fgw.

xeV

Then, for V = 7Z we can write

Vi) = (8, ¢"¥80) = Z(x")m@

where S_; is the shift operator that sends & to §;_;.
Let a* := (X*)o. Then, it is easy to see that 3> a7 = ¢ (2)*,with ¢(z) :=
o L @iz’ Therefore,

20— 1 ¢ ()

4 T o 7+

’

where the integration is over a small contour around 0. Hence, the transition amplitude is
given by the formula

it 1 el 1 o
1//l (t) — Z (k)( ) - dZ - el[(P(0)+m9)d0’

K 2xi 7+l 2n
where we made the change of variables z = ¢~/% and where « =1/t.
We can evaluate the asymptotic behavior of this integral by the method of stationary
phase (Chap. 4 in [5]). The points of the stationary phase can be found from the equation:

P'®) = —a. (7

Suppose that this equations has K > 0 solutions 6, (). Then, the asymptotic contribution of
the stationary point 6 to the integral above is given by the following formula:

1 1
V211 TP

where the sign before i /4 depends on whether P”(6;) is positive or negative. By adding
these contributions we obtain the first claim of the theorem.

If (7) has no real solutions, then there are no points of stationary phase in interval [0, 27).
In this case, we can apply the method of integration by parts. Usually, in this case the as-
ymptotic approximation is of the order r~'. However, in our case it is smaller due to special
properties of function P (6) and number «.

Indeed, let us denote P(6) + «f as f,(6) for shortness. Note that the first derivative f
is periodic with period 27 and therefore all other derivatives are also periodic with period
2. In addition, if af is integer (which is exactly the case we consider, then exp(izf, (0)) is
periodic with period 27.

eit(P(Gk)+ot€k)im'/4 L0 <;>’
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Since | f'(0)| # 0 anywhere in interval [0, 277), hence we can use integration by parts in
the following form:

2 ) 1 2 1 d )
f elt_fa(9)d9 — _(eltfa(H))de
0 it Jo f'(0)do

1 1 . 1 o
_ itfo(2m)\ _ itfe(0)
~ [f/(zm @ -0t )]

2
LT A Y gy
it J, a0\ f®)

By using the special properties of the function f,(8), we can conclude that the first term is

zero and therefore
2 ) 1 2 1 / )
/ e”fa(g)do — __/ ( ) e”fa(e)de.
0 it Jo \J'(®)

In particular, this integral is O(¢t~!). Since the function (1/f'(#)) is periodic, hence the
argument can be repeated . It is easy to see that it can be repeated indefinitely, and we obtain
that the integral is less than ¢,z ™" for every n. O

Proof of Theorem 1.4 Let X be the adjacency matrix for Z? and H and V be the adjacency
matrices that take into account only horizontal and vertical bonds, respectively. In other
words,

X=H+YV,
and
Hij = i1k +8ir1,0)91,
Vi = 8ix (810 +8j41,0).
It is easy to see that
HV)iju=VH)iju=i—1x+8it1,6)j-11+8j41,0)-

That is, H and V commute. This implies that

eltX — e”He”V.

After we apply eV to ¥ (0) = 8(0,0), the result at vertex (i, j) is 8; ¥ (t) where dy; is the
Kronecker delta and v/, (¢) is the wave function for the nearest-neighbor quantum walk at Z
started at 0. Next, after we apply ¢/, the result at vertex i, j is ¥; (£)¥;(¢) since it equals
the wave function of the nearest-neighbor walk on graph Zx (0, j) started with the initial
data ¥ (¢). O
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3 Nearest-Neighbor Quantum Walk on Trees

Proof of Theorem 1.5 First, note that

i = (in*

V(1) = (8, €"*8 >—;<6w,x’<a e
o0 k
= > edun

where ¢, (Jw|) denotes the number of all possible paths with k edges that start at the root and
end at vertex w.

Let A; denote the number of paths from e to e that have length k and do not pass along a
specific edge which is connected to e, say, do not pass along edge x,. Let By be the number
of paths from e to e that have length k, without any additional restrictions. Let A(z) and
B(z) denote the generating functions for A; and By, respectively, that is,

oo ]
A@ =) A, and B@=) B,
k=0 k=0

where we set Ag = By =1.
From Lemma 3.1 proved below, it follows that

> (D =AQR)'B().
r=0
Hence,
1 Az)'B
)= 51 § ATED,,

where the integration is around a small circle around 0.
Let |w| =1, then for the transition amplitude from e to w, we can write

@n*
Vi) ‘ZT c (D)
k=l
N @ %A(z) B() |

=) 2 !

)

which we can re-write as follows:

_ L 1 -1 - M
Vi) = zmyh(z) B(2)z <k2_; T A

_ b I -] itz (lf/Z)k
—Zm.fA(z) B(2)z [e Z

k=0
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The sum in the last line gives zero contribution to the integral since neither A(z) nor B(z)
has any singularity at 0. Hence, we can write

1
w_l(t) — %fA(Z)lB(Z)ZI—IeiI/de — L ‘¢'|:A(1/u)i| Meitudu
l

2mi u u

- L f [F@) T Gwe™du,
27

where we used the substitution u = 1/z, and
1 1
F(u) : —A(—),
u u
1 1
G(u):=-B|-).
u u

The second and third integrals are taken over a sufficiently large circle around the zero which
includes all of the singularities of F («) and G (u).

We calculate F (1) and G (u) explicitly below (Lemmas 3.2 and 3.3). The function G («)
is analytical at points u = £m, therefore the only singularities of the integrand are branch
points of F(u) and G(u) at u = £2+/m — 1.

We want to find out the asymptotic approximation for those values of / which are com-
parable with 7. Let [ = ot with & > 0. The we can write the transition amplitude as follows:

1 .
wl(t) — % % el[[u—lalOgF(u)]G(u)du. (8)

Recall that r := 2+4/m — 1. Let us deform the contour of integration so that it goes first from
—r to r just below the real axis, and then goes back just above the real axis.

Let f(u) :=u — iclog F(u). For real u € [—r,r], we can compute Imf(u) =
(a/2)log(m — 1), which is constant with respect to u. Hence, we can use the stationary
phase approximation to this integral.

In order to find the points of stationary phase, we need to solve the equation d(Re f («))/
du = 0. Since Im f (1) is constant, it is the same as solving

df ) _ 1 —ia Fl(u)
du F(u)

(C))

First, let us consider the case 0 <o < r.

For the part of the contour that lies in the upper part of the complex plane, we have:
Fu) = u —ivr?—u?)/Q2@m — 1)), hence f'(u) =1+ a/~/r* —u? and (9) becomes
—a = +/r? — u? which has no solutions in the interval (—r,r) for any positive a. Hence,
the contribution of this part of the contour is asymptotically negligible provided that the
integral along the other part of the contour has stationary points.

For the part of the contour that lies in the lower part of the complex plane, we have
Fu) = u+ivr2—u?)/2@m — 1)), and (9) reduces to o = +/r2 — u?, which has two
solutions u; , = £+/r2 —a? fora < r.

Recall that the method of stationary phase says that if # is the only stationary point of
function f(u), located inside [a, b], then

G(ﬁ)eitf(ﬁ)iﬂi/él + 0(1/t),

b
/ 1O G uydu = |2
a tf"(u)
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404 V. Kargin

where the sign before i /4 is positive if Re f”(u) > 0 and negative if Re f”(u) < 0.
We compute F(u;,) = (£4/r2 —a? +ia)/(2(m — 1)). The second derivative of f (i)
can be evaluated at u , as follows.

fu o) = e —

In addition, we have

+(m —2)Vr? —a? —ima

Guip) = i m_y
and
Gl = | =L
a?+ (m—2)*2
Hence,

o? 1 12 m—1
,lp_l(t) — e—%rlog(m—l) el
2t (r2 —a?)'/? %+ (m —2)?
2 1
X |:Z eifwk(a)+i<ak(a):| +0 (_) ]
t
k=1

Here, the frequencies can be computed as

o 2 2
w); = arctan ——— + vV r- —a”,

and
W) =am —w,
and the phases can be computed as

mo T

m—2Vr—ar 4

@] = — arctan

and
P2 =—TT —¢1.

Now, consider the case @ > r. In this case, neither part of the contour has a point of
stationary phase and for the large ¢, the boundary points of the interval [—r, r] contribute
most to the integral. In this situation, we can estimate the integral by using integration by
parts. Consider, for example, the integral

Ii(e) = / WG u)du,

r+e

where f(u) and G(u) are defined as continuous limits of the upper half-plane branches of
f(u) and G(u). Then we can write:
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V[t d
Ii(e) = (—e”ﬂ”))—G(u) du

E —r+e du f/(u)
r+e r— /
=w —.GEM) - l / S et <—G(u)) du. (10)
ltf (u) —r+e it —r+e f/(”)
Since f'(u) =1+ a/~/r? — u?, therefore ?’((Z)) — 0 as u — =r, which implies that the

first part of (10) becomes zero as ¢ — 0. For the second part, note that

Gw)=Aw)+ Bu)Vr? —u?+ C(u)\/%,
r2—u

for some functions A(u), B(u), and C (u) analytic on [—r, r], which implies that
<G(u) ) _Gw  Gw 5
frw) — fla  Lf@P

has singularities (u + r)~"/2 and (r — u)~"/? at —r and r respectively. This implies that
(S0 y g absolutely integrable at [—r, r] and therefore

1@
<G(u)>/‘du < € p—@t/Dlogm—1).
I

A similar estimate holds for the integral along the contour in the lower half-plane. This
completes the proof of Theorem 1.5. O

1 r
[lim I (8)| < —e~ "™/ /
e—0 1 _r

Here are the auxiliary results that we used in the proof.

Lemma 3.1 Suppose that graph G is an infinite homogeneous tree with root e. Let Ay be
the number of paths in G from e to e that have length k and do not pass along a specific
edge which is connected to e. Let By be the number of paths from e to e that have length k,
without further restrictions, and let c,(|w|) be the number of paths from e to w that have
length k. Then,

a(w)) = Z Ay Ary -+ Ay Bryy -
ko+ky+--+kjw =k

Proof Assume that each edge in the tree is oriented and has a label, x, which is chosen
from the set {1,...,m}. It is assumed that the labels of edges around each vertex are all
different. We write label x if we move in the direction of the orientation and x~! if we
move in the opposite direction. Let x;x;_; - - - x; be the shortest path from e to w. There is
a one-to-one correspondence between the set of shortest paths and vertices so we can write
w = x;x;_1 ---Xx1. Also, let w; = x;x;_1 - - - x1. This is one of the vertices on the shortest path
from e to w. We write the edges in the path from right to left so that w, is a neighbor of the
root.

Every path from e to w can be considered as the shortest path from e to w decorated with
loops which can be attached at each of the points of the shortest path, w;. In order to make
sure that we do not double count the loops we forbid the loop attached at w; to go along
the edge that connects w; to w; ;. In this way, at every point of the path we know in which
loop we are in: We are always in the loop attached at that w; that has the largest length |w; |
among all those vertices w; that have already been visited.
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406 V. Kargin

Let [ = |w|. The number of possible different loops that can be attached at wg, wy, ...,
wy_; is counted by Ay, A, ..., Ag,_,, respectively, where ko, ki, ..., k;_; are the lengths
of the loops. The number of different loops that can be attached at w = wy is counted by By, .
Then, the total length of the path is kg + k; + - - - + k; and by assumption it must be equal
to k. Hence the total number of paths is

E AkOAkl M .Ak[,IBk['
ko+ky 44k =k O

Lemma 3.2

1 (l)_—(m—2)1+m\/zz—4(m—1) an
- )

C@=3F 2 )

Proof The function B(z) is related to the Green function of the nearest-neighbor random
walk on an infinite tree, which is well-known. (See Dynkin and Malyutov for the seminal
contribution, and Lemma 1.24 on p. 9 in [17].) Hence, we can compute

_ —(m—=2)+my/1—4(m —1)z2

B@)= 2(1 — m222)
It follows that
—(m — 2 _ _
Ge) = (m—2)z+m/z? —4(m 1). (12)
2(z2 — m?)
O

Note that we chose the branches of G(z) in such a way that the function is analytical
outside the cut [—-2+/m — 1,2+4/m — 1]. In particular, this function does not have poles at
+m.

More precisely, the sign before the square root is determined by the rule that for suffi-
ciently small ¢,

GGin~—iY" =1 ¢ -
and
G(—it) m‘m eCt.
m
Lemma 3.3

1 1 —VzZ2—4m -1
F(z):=-A . < (m ).

z 2(m —1)
Proof In order to compute A(z), we note that the following recursive relation holds.

k—1

Aye=(m—1)) " AyAsui . (13)
1=0

Indeed, consider a path from e to e, that avoids the edge x;. There are m — 1 possibilities
to start the path. Suppose that the path starts with x;, i # 1, so that the second point on the
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path is the endpoint of x; which we denote w;. Let r be the first time when the path returns
to e. Then w,_; = w, and the path from w, to w,_; is one of the A,_, paths from w; to w;
that avoid passing through the edge labelled x;. The remainder of the path goes from e to e
and it is one of the A,;_, paths that avoid the edge x;. The number r must be even, greater
than O and less than 2k. Hence we can write it as r = 2] + 2, where 0 <[ <k — 1. This
implies the recursive (13).

Next, we can use the recursion formula for Catalan numbers,

k-1
Cy = Z CiCroi-1,
1=0

and (13) in order to conclude that
Ag = (m — 1)*Cy.

By using the generating function for Catalan numbers, we obtain the following formula for
A(2):

1—1—4(m—1)z2

A =
(2) m— 12
It follows that
_ m
Fy=ove—4m=1 O

2(m —1)

The sign of the square root in the expression for F(z) is determined by the following
rule: for all sufficiently small ¢,

F(ity~—-i/vm—1eC,

and

F(—ity~i/sm—1eC".
Proof of Theorem 1.7 By (8), we need to find asymptotics for
1 itu
Vo) = 5— P " Gu)du, (14)
2mi

where

—(m — 2u + m/u* —r?

2(u? — m?)

Gu) =

and r = 2+/m — 1. We can deform the contour so that it starts at —r, passes just below the
real axis to r and then returns back to —r just above the real axis. Then, we find that

PN .
L8 2w — ey

1 [ Vo —
wo(t)=;/ it MNT u
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The main contribution is produced by singular points r. After integration by parts, we
obtain the following formula

bo(r) = ue't /" —2u~r? —u?

Wt | TeE =y

1 m /" 1 -
2mi t [ J_, P2 —u? u? —m?

We can apply van der Corput’s results (see [5], p. 24) to the first integral in the brackets and
obtain the following asymptotic approximation.

r 1 _ueitu T r . i R .
du = e—l?‘r+ﬂl/4 _ eltr—m/4 + o) t—l .
/,r JrZ—u2 u? —m? V 2rtr2—m2( ) @

We can apply the integration by parts to the second integral and find that it is O(¢~!). It
follows that

ei”‘du].

1 mﬁ . -2
Yo(t) = Wm sin(rt —m/4)+ O™ )
_1\1/4
- \/Elrm mé’: - gz sin(2/m — 1t — 7/4) + 0 (2.
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